7x^2+12=51-4x^2

Simple and best practice solution for 7x^2+12=51-4x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2+12=51-4x^2 equation:



7x^2+12=51-4x^2
We move all terms to the left:
7x^2+12-(51-4x^2)=0
We get rid of parentheses
7x^2+4x^2-51+12=0
We add all the numbers together, and all the variables
11x^2-39=0
a = 11; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·11·(-39)
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{429}}{2*11}=\frac{0-2\sqrt{429}}{22} =-\frac{2\sqrt{429}}{22} =-\frac{\sqrt{429}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{429}}{2*11}=\frac{0+2\sqrt{429}}{22} =\frac{2\sqrt{429}}{22} =\frac{\sqrt{429}}{11} $

See similar equations:

| 5y-2y/20=1 | | 1/2(x-4)=-5 | | q^2+4q+29=0 | | −2(w-6)=7w-6 | | 6x+8=5x−7 | | 15y+1=1 | | 14a-21=25a=1 | | -27=-7+5v | | -3z+3=-5z+1 | | -10+y+3=4y-14 | | -2(x-90=-24 | | 6k-4K=18 | | (-42p)÷7=0 | | 11g–6g=15 | | 4-7x=6x+16 | | 4+3n=3+2n | | 5k÷6+k÷3=7 | | 12/8=n/9 | | 2x+(1/4)=(5/6)+(1/4x) | | -4h=-10-5h | | 3x^2+x-62=7 | | 3x-1/9=271-X/32+x | | 4x+19=11x-12 | | x/8+6=-10 | | 2(c+)=c-13 | | -4=2x=-6 | | -4r=-10-9r | | -9y-5=-59 | | 4w-11=-23 | | 2x+5=8x-5=90 | | x^2-15+26=0 | | -6=(x-8) |

Equations solver categories